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8.1 Chern-Simons theory

8.1.1 The Chern-Simons action

In previous lectures, and in particular in the exercises, we have already ecountered the
Chern-Simons form several times. In particular, in exercise 4.3, we have seen that one can
write

Tr (F ∧ F ) = dTr (A ∧ dA+
2

3
A ∧ A ∧ A) (8.1)

where A is a local connection one-form and F is its two-form field strength. In particular,
if A is defined globally, and if we have some 4-manifold M with boundary ∂M = Σ, Stokes’
theorem implies that we can write∫

M

Tr (F ∧ F ) =

∫
Σ

Tr (A ∧ dA+
2

3
A ∧ A ∧ A). (8.2)

We would like to think of the right hand side of this equation as the action for some
quantum field theory defined on Σ itself – or more generally, for any three-manifold Σ,
regardless of whether it can be viewed as the boundary of some four-manifold M . (In
particular, we will later look at situations where Σ has a boundary itself.)

However, the interpretation of the right hand side of the above equation as an action is not
immediately straightforward, as by now we have learned that the 1-form A is not always
globally defined, but that it is a local description of a globally defined connection ∇ on a
fibre bundle E → Σ. In particular, only on topologically trivial subsets U ⊂ Σ can we
write ∇ = d+ A. Thus, we can really only define

SCS,U =

∫
U

Tr (A ∧ dA+
2

3
A ∧ A ∧ A) (8.3)

for such patches, and we have to convince ourselves that these partial actions can be
consistently “glued together” into a well-defined global action SCS,Σ.

Fortunately, we already have all the tools at our disposal to see that this can be done.
When Σ can actually be seen as a boundary of a 4-manifold, Σ = ∂M , this is obvious from
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(8.2), as we can simply define the right hand side (also for topologically nontrivial Σ) to
be equal to the left had side, which is well-defined globally.

More generally, even if we cannot view Σ as a boundary, we have seen in exercise 7.3
that there is another interpretation of the Chern-Simons form, coming from the concept
of a transgression form between two connections ∇ and ∇′ defined on a bundle Ẽ over Σ
itself. Recall that to construct this transgression form, we first define a connection ∇aff on
[0, 1]× Σ as

∇aff = dt + t∇′ + (1− t)∇, (8.4)

where t parameterizes [0, 1]. The above definition essentially “interpolates” between the
connections ∇ at t = 0 and ∇′ at t = 1. (The dt part simply states that parallel transport
in the new t-direction is trivial.) Transgression forms are now obtained by integrating
invariant polynomials P (F ) for the field strength (curvature) of ∇aff over the t-direction:

L(∇,∇′) =

∫ 1

0

P (F (∇aff)) (8.5)

In particular, for our favorite invariant polynomial P (F ) = Tr (F ∧ F ), we have seen in
exercise 7.3 that for a trivial bundle (where we can always define a connection through a
global one-form A), one can write the transgression between the connections ∇ = d and
∇′ = d+ A as

L(d, d+ A) = Tr (A ∧ dA+
2

3
A ∧ A ∧ A). (8.6)

Of course, if Σ is topologically nontrivial then there are nontrivial bundles Ẽ → Σ for
which the connection d cannot be defined, so the above construction does not quite give us
a definition of the Chern-Simons action in those cases yet. However, for such a bundle we
can simply pick a “base” connection ∇0 once and for all, and then define the Chern-Simons
action to be

SCS(∇) =

∫
Σ

L(∇0,∇) (8.7)

In the case where Ẽ is trivial and ∇0 = d, this clearly reduces to our previous definition.

Thus, we see that (after picking a “base connection” if necessary), we can define a global
Chern-Simons action that assigns a number to any other connection ∇ on our bundle
Ẽ. Locally, after picking a connection one-form, this action can always be written in the
standard Chern-Simons form (8.2). Of course, physicists are often lazy, and simply write

SCS =

∫
Σ

Tr (A ∧ dA+
2

3
A ∧ A ∧ A). (8.8)

also in more general cases. There is nothing wrong with this, as long as one remembers
that, because of the issues about the global definition of Chern-Simons theory that were
discussed above, this expression needs to be evaluated patch by patch, where each patch
might require the use of a different 1-form A.
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8.1.2 The level of Chern-Simons theory

Let us for a moment go back to the situation where Σ = ∂M and have another look at the
definition of Chern-Simons theory in that case:

SCS(∇(Σ)) =

∫
M

Tr (F ∧ F ). (8.9)

One may now wonder: is this definition as sound as it seems? If we start from a connection
∇(M) that is defined over all of M and such that

∇(M)

∣∣∣∣
Σ

= ∇(Σ), (8.10)

then everything is of course well-defined, but if we start from a connection ∇(Σ) that is
only defined on a bundle over Σ, we may wonder what the right hand side of (8.9) actually
means. In particular:

1. Can ∇(Σ) always be extended to a connection ∇(M) on some bundle over M?

2. Is such an extension ∇(M) unique?

We will not go into the first question here, but simply state that ∇(Σ) can indeed always
be extended to a connection over M . However, the answer to the second question is in
general no: the extension over M is not unique! This seems to lead to a problem, as this
renders the Chern-Simons action ill-defined after all. However, what we learned before
about characteristic classes will come to our rescue.

To see this, assume that we have two different extensions ∇(M) and ∇′(M) of ∇(Σ). We now

use the following trick: we glue together two copies of M (one with its orientation reversed,
which we will denote by −M) along the boundary Σ – exactly like how one would glue two
hemispheres into a sphere by glueing along the equator. Clearly, the resulting manifold
Y = (M ∪ −M)/ ∼ (∼ is the equivalence relation that identifies corresponding points
on the two boundaries) no longer has a boundary: ∂Y = 0. Moreover, we can use this
construction to glue the bundles over M and −M into a bundle over Y as well, and because
of the orientation reversal, we can also equip the bundle over M with the connection ∇(M)

and the bundle over −M with the orientation reversal of the connection ∇′(M), in such a
way that the result is a smooth connection ∇(Y ). Now, clearly,∫

Y

Tr (F ∧ F ) =

∫
M

Tr (F ∧ F ) +

∫ ′
−M

Tr (F ∧ F ) (8.11)

where the first term on the right hand side is evaluated using ∇(M) and the second term
using ∇′(M) – indicated by the prime on the integration symbol. Returning to our original
orientation in the second term, we find∫

Y

Tr (F ∧ F ) =

∫
M

Tr (F ∧ F )−
∫ ′
M

Tr (F ∧ F ), (8.12)
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so the intergral over Y tells us exactly what the difference between our two choices for the
Chern-Simons action is! But now we can use the facts that Tr (F ∧ F ) is a characteristic
class and that Y has no boundary to conclude that the left hand side of the above equation
must be integral up to a factor1:

1

4π

∫
M

Tr (F ∧ F )− 1

4π

∫ ′
M

Tr (F ∧ F ) = 2πn, n ∈ Z. (8.13)

Thus, the definition of the Chern-Simons action indeed depends on the way we extend ∇(Σ)

over M , but we see that the dependence is mild. In particular, if we properly normalize
the Chern-Simons action as

SCS,k(∇(Σ)) =
k

4π

∫
M

Tr (F ∧ F ), (8.14)

with k an arbitrary nonzero integer, then in the path integral, the factor eiSCS,k is indepen-
dent of the extension. As a result, the partition function and all correlation functions for
this theory are perfectly well defined and independent of how we extend ∇(Σ). Note that
(by rescaling A such that the prefactor only appears in front of the A∧A∧A term), k plays
the role of a coupling constant of the theory. Thus, we find that the quantum version of
Chern-Simons theory is only well-defined if the coupling constant is integral. This integral
coupling constant is called the level of the Chern-Simons theory.

8.1.3 Symmetries of the theory

Chern-Simons theory is one of the most studied quantum field theories is theoretical
physics. One reason for this is that the theory has an enormous symmetry group. Let
us again focus on the case where Σ = ∂M is the boundary of a 4-manifold. First of all,
the theory is now gauge invariant, just like Yang-Mills theory, for the simple reason that
by extending it over M , we can write the action exclusively in terms of the field strength
F , which itself is invariant under gauge transformations.

However, there is an important difference between Maxwell theory and Yang-Mills theory.
Recall that for Maxwell theory, the action is

SYM ∼
∫
M

Tr (F ∧ ?F ). (8.15)

The crucial observation is that in this definition, the Hodge star appears, which depends on
a choice of metric gµν(x) on M . However, in the Chern-Simons action, no metric appears
whatsoever, as can be seen both from the local action on patches of Σ and from its global
extension over M ,

SCS ∼
∫
M

Tr (F ∧ F ). (8.16)

1Here, we use conventions where F is rescaled by a factor and the wedge product has an additional
factor of 2 in it, so that our final expression agrees with the normalizations generally used in physics
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Therefore, SCS does not change if we choose a different metric on M or Σ, and since it can
be written as an integral of a three-form over a three-manifold in the local descripton, or
as the integral of a four-form over a four-manifold in the global description, it also does
not depend on a choice of coordinates on M .

Thus, we have found that the partition function of Chern-Simons theory only depends on
the topology of M : ZCS(M) is a topological invariant! This observation has many interest-
ing applications both in physics and in mathematics, which we may come to later in this
course if time permits. For example, one may choose the manifold M to be the complement
of a one-dimensional knot embedded in (say) S3, in which case ZCS(M) provides us with
a knot invariant.

The above ideas can be made even more interesting by not just studying the partition
function ZCS(M), but also some of its correlation functions. However, to write down a
correlation function

〈O〉 ≡
∫
DAOeiSCS,k[A] (8.17)

which has the same nice symmetries as the partition function 〈1〉, we need to introduce
very special operators O that also do not depend on a choice of metric or of coordinates.
It is to this choice of operators that we turn next.

8.1.4 Holonomy and Wilson loops

Assume we have some vector bundle E → M with canonical fiber F , and a topologically
trivial subset U ⊂M so that we can parameterize points in E by coordinates (xµ, vi) ∈ U×
F . The question we are interested in is the following: if we start from some point (xµ0 , v

µ
0 ),

where do we end up if we parallel transport this point using a connection ∇ = d+ A?

Of course, the answer depends on the path along which we parallel transport, so let us
assume that we have chosen a path xµ(t) with xµ(0) = xµ0 . Moreover, let us begin by
parallel transporting an infinitesimal amount, up to xµ(δt) ≡ xµ0 + δxµ. Parallel transport
means that vi(t) must be covariantly constant:

dvi

dt
+
dxµ

dt
(Aµ)ijv

j = 0. (8.18)

Here, we have pulled back the connection one-form A to the real line parameterized by t,
explaining the factor dxµ

dt
. In this equation, Aµ of course depends on x and therefore on t,

but if we are interested in transporting an infinitesimal amount only, we can consider Aµ
to be constant. The same is true for dxµ

dt
, and so we can integrate the above equation to

find

vi(δt) = exp

(
−dx

µ

dt
(Aµ)ijδt

)
vj0 +O(δt) (8.19)

which of course can be written as

vi(δt) = exp
(
−(Aµ)ijδx

)
vj0 +O(δt). (8.20)
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The conclusion of this computation is that we should think of exp
(
−(Aµ)ijδx

)
as the Lie

group element that implements the action of an infinitesimal parallel transportation along
δx.

What about parallel transport over finite distances? Of course, we can then chop up such
a finite path into infinitesimal pieces: if we want to transport from, say, t = 0 to t = 1 we
simply define

xn = x(n/N) (8.21)

for some large integer N , and find that

vi(1) = exp
(
−(Aµ)ij(x0)δx0

)
exp

(
−(Aµ)ij(x1)δx1

)
· · ·

· · · exp
(
−(Aµ)ij(xn−1)δxn−1

)
vi(0) +O(1/N) (8.22)

where we state without proof that indeed, the corrections to the result vanish in the
“smooth limit” N →∞. (A less hand-waving proof of our final result can be found e.g. in
section 10.2 of Nakahara.)

In the Abelian case, where Aµ is a number instead of a matrix, one can now easily multiply
all the exponentials; in the limit N →∞ the result is that

vab(1) = exp

(
−
∫
Aµ(x)dxµ

)
vab(0). (8.23)

In the nonabelian case, things are slightly more complicated, since (by the Baker-Campbell-
Hausdorff formula) we cannot simply replace the product of exponentials by an exponential
of a sum. In fact, even though the N → ∞ limit of (8.22) is perfectly well-defined, there
is not really a shorter expression for it in terms of an integral. The solution is simple:
we just introduce a shorter notation to describe the limit of the “path ordered product of
exponentials”: in analogy with the abelian case, one writes

vi(1) = P exp

(
−
∫

(Aµ)ijdx
µ

)
vj(0) (8.24)

as a shorthand for the N →∞ limit of (8.22). The group element

Gγ = P exp

(
−
∫

(Aµ)ijdx
µ

)
, (8.25)

which of course depends on the path γ parameterized by xµ(t) (and in particular on its
starting and ending points) is called the holonomy of the fiber upon parallel transport
along γ.

Now remember our goal: we are interested in constructing observables for Chern-Simons
theory that have as many of the symmetries as the theory itself. One thing we can do
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to achieve this is to consider loops instead of just any paths: if xµ(1) = xµ(0), we are
integrating over a path without boundary, and therefore (by Stokes’ theorem) the resulting
holonomy does not change if we do a gauge transformation. (In fact, in the nonabelian case
one would still have to prove that this is true for an integral in a path ordered exponential,
as it is for an ordinary integral, but here we will omit the details of that proof.)

Finally, the holonomy is still a matrix, and of course the form of this matrix will depend
on a choice of (say orthonormal) basis for the fiber F . To really compute a basis-invariant
number, one can e.g. take the trace of this matrix, and this is what physicists normally do.
Collecting all of those ingredients, we arrive at what is called the Wilson loop observable
in Chern-Simons theory:

Wγ = Tr P exp

(
−
∫
γ

(Aµ)ijdx
µ

)
. (8.26)

A note on terminology: as we mentioned, the most interesting case is to consider loops
with γ(0) = γ(1). The more general case with different end points is called a Wilson line.
Wilson lines, and in particular Wilson loops, are the most studied and most interesting
observables in Chern-Simons theory. For example, Edward Witten has shown that many
interesting knot invariants can be obtained by computing Wilson loop expectation values
along the knot in an SU(N) Chern-Simons theory on S3. This is a great example of the
fact that physics can actually help progress in mathematics, and not just the other way
around. If time permits, we may come back to this topic later in the course.

8.2 Fermions and path integrals

8.2.1 Motivation: fermions, spin and statistics

The goal of this course is to highlight the many interesting relations between topology
and physics. We have already seen several instances of such relations, but to arrive at
the most interesting examples, one ingredient is still missing from our story. So far, all
the quantum fields we have studied have been bosonic fields. However, in physics one also
encounters fermionic fields, and it turns out that including such fermionic fields into our
considerations is a very rich source of topological applications.

The first question we have to face, therefore, is: how do we describe fermions mathemat-
ically? Fermions differ from bosons in two important respects: they have a different spin
and they obey different statistics. In fact, it can be shown that these two observations are
closely related – the so-called “spin-statistics theorem” – but for now we will view these
two statements as separate properties.

Let us make some brief remarks about spin, even though for now we will be mostly be
interested in the “statistics” property of fermions. Contrary to bosonic fields, fermionic
fields have half-integer spin. All fields in nature transform in a specific way if we apply a
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spatial rotation: there are scalar fields that do not change at all if we rotate out physical
setup (think of temperature as an example), but there are also vector-like fields such as the
electric field whose direction changes along with space-time itself if we rotate our setup.
In more mathematical terms: (quantum) fields must be valued in a given representation of
the rotation group.

At first sight, one might guess that this rotation group is SO(3), but SO(3) in fact has
the same Lie algebra as its double cover SU(2), and it turns out that in practice it is the
latter group that plays a role. Of course, the scalars and vectors we mentioned still form
representations of SU(2), but SU(2) has additional representations like its fundamental
representation in terms of 2× 2 matrices. It turns out that for example the electron field
transforms exactly in this representation under rotations: it is a two-component field and
applying a rotation to it can be described mathematically by applying the relevant SU(2)
matrix. This in particular means that if we rotate an electron by 360 degrees, we do not
get back its original state: its quantum mechanical wave function obtains a minus sign
(which can be measured in certain interference experiments), and only if we rotate by a
full 720 degrees do we get back the exact original electron wave function.

More generally, representations of SU(2) can be classified by a nonnegative number called
their spin s, which is related to the dimension d of the represenation as d = 2s + 1, and
this spin can be integer or half-integer. (Terminology: by “half-integer”, physicists usually
denote half of an odd integer, so a number of the form n + 1/2 with n ∈ Z.) Fields
that transform as integer spin representations are called bosons; fields that transform as
half-integer spin representations are called fermions.

The relation to the “statistics” of fermions arises as follows. Under some reasonable as-
sumptions, it can be shown that the quantum wave function of two identical fermionic
particles also obtaines a minus sign if one exchanges the properties of the two particles –
their postion, momentum, and any other properties they may have:

Ψ(x1, p1, . . . , x2, p2, . . .) = −Ψ(x2, p2, . . . , x1, p1, . . .) (8.27)

This in particular means that the wave function must vanish if we try to give two fermionic
particles exactly the same properties:

Ψ(x1, p1, . . . , x1, p1, . . .) = 0. (8.28)

Now it is a well-known fact in quantum field theory that the wave function where a particle
is in a given state, can be obtained from the ground state (vacuum) wave function, by
applying an operator known as the creation operator, schematically:

Ψ1-particle = α†Ψvacuum, Ψ2-particle = β†Ψ1-particle, . . . (8.29)

The dagger here is conventional: it turns out that these “creation operators” are the
hermitian conjugates of operators that annihilate a particle, and those operators are usually
denoted without the dagger.
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Now comes the punch line: since creating two of the same particles must lead to a vanishing
wave function, we must have that these creation operators square to zero:

(α†)2 = 0. (8.30)

In fact, it turns out this observation has an enormous generalization: since creation op-
erators have a linear relationship to quantum fields (they can be viewed as the Fourier
modes of those quantum fields), the above observation generalizes to the entire fermionic
quantum field: such a field ψ(x) must satisfy

ψ(x)2 = 0. (8.31)

This means that clearly, fermionic quantum fields cannot be ordinary functions, or even
sections of ordinary bundles: those objects only square to zero. So the main question we
have to address now is: how do we describe “function-like” objects that square to zero?

8.2.2 Grassmann numbers

The question that we ended the previous paragraph with can be compared to the question
one asks when introducing complex numbers: how does one describe an object that squares
to −1? The answer there is: we simply postulate a new object “i”, and require that it
squares to −1, and then see if adding this object to the set of real numbers leads to any
useful structure. (Wich of course it does!)

So let us do the same here: we introduce a new object θ and postulate that it squares to
0: θ2 = 0. In fact, let us be slightly more general here, as we will want to introduce many
different fermionic objects that we will call θi for now. Each of these objects should square
to zero and should moreover anticommute with the others (compare this to the property
that exchanging two fermions gives the wave function a minus sign):

{θi, θj} ≡ θiθj + θjθi = 0. (8.32)

How should we think of the θi? We could think of them as “numbers”, like i, but in fact it is
a bit more natural to think of them as “variables”. For example, we will want to introduce
operations such as integration and differentiation with respect to θi, just like we would for
an ordinary, commuting variable x. Of course, one important difference between θi and x
is that the commuting variable x can actually take on a value (say, 7), but there are no
“values” that θi can take on. Put differently: whenever we want to compute a physical
quantity, it should not depend on any θi anymore, just like any real physical quantity
should not have the number i in it. Since we will mostly introduce our θi as objects to
be integrated over inside a path integral, this will be more or less automatic in our setup.
Unfortunately, the terminology is still that θi is usually called a Grassmann number in the
literature – though the name “Grassmann variable” also appears.

The θi can be thought of as generators of a (noncommutative) algebra over the real num-
bers. That is: we want to be able to add and multiply Grassmann variables, and also
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multiply them with ordinary numbers. Since any product that has the same θi in it twice
vanishes, this means that when we only have a finite number of Grassmann variables (say
labeled by 1 ≤ i ≤ N), the resulting algebra is also finite dimensional: any element in it
can be written as

f(θ) = f0 +
N∑
i=1

fiθi +
∑
i<j

fijθiθj + . . .+ f123...Nθ1 · · · θN , (8.33)

where the coefficients f are ordinary numbers (real or complex, depending on the set-
ting). As the notation indicates, we should think of f(θ) as a “function” of the Grassman
variables; because of anticommutativity, such a function has a finite (and exact) Taylor
expansion.

8.2.3 Differentiation and integration

Just like for ordinary variables, one can define differentiation with respect to a certain θi in
the algebra generated by the Grassmann variables. The only difference here is that we have
to be careful with signs if we differentiate: for example, since θiθj = −θjθi (i 6= j), one may
wonder whether the derivative of this product with respect to θi is θj or −θj. The usual
convention is to define differentiation as left differentiation. That is, to take the derivative
of any monomial with respect to θi, one first anticommutes θi to the left and then removes
it from the expression. (Notice that θi never occurs twice in a monomial, so differentiation
is always simply removing the variable and keeping the “constant” factor that multiplies
it.) Moreover, the θi derivative of a number is zero, just like the x-derivative of a number
vanishes. Some examples:

d

dθ
1 = 0,

d

dθ
θ = 1,

d

dθ2

(7θ1θ2θ3 + 5θ4) = −7θ1θ3. (8.34)

The next question we want to address is: how do we integrate over Grassmann variables?
First, we have to decide whether we are interested in the analogue of an indefinite integral
(the primitive) or of a definite integral like

∫∞
−∞ f(x)dx. Since the goal of our integral will

be to really “integrate over a variable” – that is, to find an expression which no longer
dependent on a certain variable, it is the definite integral that we are interested in – despite
the fact that “boundary values” like x = ±∞ do not make sense for a Grassmann variable
θ. For this reason, we will always write ∫

f(θ)dθ (8.35)

without boundaries, but the reader should keep in mind that Grassmann integerals never-
theless are the analogue of definite integrals.

The reason we stress the above remark is that we want to define Grassmann variable
integration in such a way that at has three properties that regular definite integrals also
have: we want to define an operator I on the Grassmann algebra that satisfies
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• DI = 0,

• ID = 0,

• If D(A) = 0 then I(AB) = AI(B).

Here, D = d
dθ

is the differentiation map with respect to a certain Grassmann variable. The
first requirement above is simply the fact that I is a definite integral: its result should
no longer depend on θ. The second requirement is that the integral of a total derivative
vanishes – that is: we assume that Grassmann integration has no “boundary terms at
infinity”. The final requiremen is the usual property of integration that constant factors
can be taken outside the integral.

There is a surprising map I that satisfies all of the above requirements: one can easily
check that I = D works. The first two requirements are satisfied because D2 = 0, and the
third one is true because constants can be taken outside differentiation. Perhaps even more
surprisingly, it turns out that I = D is essentially the only map that works: in exercise 3
you will show that any map I satisfying the above three requirements must equal I = cD
for some constant (ordinary) number c. Clearly, c = 0 does not give the map we are looking
for, and by rescaling θ one can always set any other c to c = 1. Therefore, in what follows
we will always work with I = D. For Grassmann variables, integration and differentiation
are the same!

8.2.4 Fermionic path integrals

Now that we have defined integration over single Grassmann variables, fermionic path
integrals are not difficult to understand anymore: if we want to do a path integral over a
fermionic field ψ(x), we simply should think of x as a label (just like i was a label in θi)
and do the definite integral over each ψ(x) separately. However, for future purposes, let
us note some differences between fermionic (path) integration and the bosonic case.

1. In (path) integrals, it is often useful to change variables. Let us take the finite case,
and change variables from θi to θ′i = ai

jθj. Since integration equals differentiation,
we know from

∂

∂θ1

· · · ∂

∂θN
f(θ) = det(a)

∂

∂θ′1
· · · ∂

∂θ′N
f(a−1θ′) (8.36)

that also ∫
dθ1 · · · dθN f(θ) = det(a)

∫
dθ′1 · · · dθ′N f(a−1θ′) (8.37)

Thus, the integration measure changes in the oposite way from what we are used to
in the bosonic case: instead of multiplying by the Jacobian, one needs to divide by
it.

2. Complex conjugation for Grassmann variables is introduced “by hand”: for every
Grassman variable θi, one can simply introduce an additional one labeled θ∗i , and
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require that the operation of complex conjugation acts on these objects by exchanging
θi and θ∗i . In fact, in monomials that contain several θi, one needs to also exchange
the order:

(θiθj)
∗ = θ∗jθi (8.38)

The reason for this convention is that then θiθ
∗
i equals its own complex conjugate,

and therefore can be considered to be a “real” quantity, just like in the bosonic case.

3. Using the previous two points, one can now easily compute the Gaussian integral

G =

∫
dθ∗1dθ1 · · · dθ∗NdθN exp

{
−
∑
i,j

θ∗iMijθj

}
(8.39)

for example by changing variables to θ′i =
∑N

j=1Mijθj. Taking care of the signs, one
finds that

G = detM (8.40)

which once again is the opposite result from the bosonic case, where (up to constant
factors) one would find 1/ detM .

4. Taking the limit N → ∞ to define actual path integrals is not more complicated
than in the bosonic case. To derive Euler-Lagrange equations from fermionic path
integrals, one needs to define functional derivatives with respect to ψ(x). This is
in fact slightly easier than in the bosonic case, as one can simply introduce a new
Grassmann variable ε and define

δF [ψ(t)]

δψ(x)
≡ 1

ε
(F [ψ(t) + εδ(t− s)]− F [ψ(t)]) (8.41)

where δ(t− s) is the ordinary bosonic delta function. Note that no limir is required;
the notation “1/ε” simply means that the result in brackets is proportional to ε, and
we remove that auxiliary Grassmann number. (In fact, for generic objects that are
not linear in ε, division by it is not well-defined.)

If you have never worked with Grassmann variables before, some practice is definitely
recommended. You might first want to try exercise 3 in the exercise sheet for this lecture.
After that, if you also want to get acquainted with fermionic path integrals, there is a
worked out example in section 1.5.10 of Nakahara that computes the partition function of
the fermionic harmonic oscillator as a fermionic path integral; it can be very useful to go
through this computation step by step.

12


